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For many applications, one cannot expect to observe every variable of every example in the
data. There can be many reasons why data is missing. In surveys, some people will choose not
to disclose private information. For medical data, it is not feasible to run every test on every
patient. Historically, some data may have been forgotten, and can never be recovered. Sensory
equipment might fail or produce faulty measurements. In all those cases, we are still interested
in learning Bayesian networks and their parameters from missing data.

1 Missing Data Mechanisms

To learn from missing data, it is important to first understand the mechanisms that cause data
to go missing. By assuming certain mechanisms, we will be able to derive specific algorithms for
missing data and prove their properties.

There are three types of variables in missing data problems:

– fully-observed variables are always observed,

– hidden or latent variables are never observed, and

– partially-observed variables are observed in some examples but missing in others.

Latent variables are an interesting case: why would we want to learn with variables that are
never observed? Latent variable can capture properties of the examples that we know exist, but
that we cannot observe. For example, different users react differently to advertisement. We can
model this by adding a latent “personality” variable to our model. Even though we cannot know
the personality of any specific person (it is not even clear what the personality values would be),
we can learn a model that clusters people according to their personality and uses this information
to explain their behavior. Other examples of latent variables are genetic properties of patients,
and topics of text documents. This are useful concepts to include into a machine learning model.

We begin by introducing some notation specific to missing data. As an example, consider
Figure 1, depicting a Bayesian network, and a dataset with missing values, modeling the relation-
ship between exposure to asbestos (a), being a smoker (s) and the incidence of lung cancer (c).
Here, the value for variable c is always observed in the data, while the value for variables a and
s can be missing. An augmented dataset extends a standard dataset with missing values as fol-
lows. For every partially-observed variable x, the augmented dataset has an additional random
variable mx denoting the missingness of x. When x is observed in the data, then mx = ob, and
otherwise mx = unob. Note that the missingness variable mx itself is always observed. For our
example dataset, the augmented dataset has two additional missingness variables: ma and ms.
This augmented dataset, and its augmented probability distribution p(a, s, c,ma,ms), can serve
as a useful tool for analyzing missing data problems.
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(a) Bayesian network

a s c

? 1 1
1 0 0
0 ? 1
0 ? 0
1 1 1
? 0 0
1 0 1

(b) Dataset

a s c ma ms

? 1 1 unob ob
1 0 0 ob ob
0 ? 1 ob unob
0 ? 0 ob unob
1 1 1 ob ob
? 0 0 unob ob
1 0 1 ob ob

(c) Augmented dataset

Figure 1: Data with missing values and Bayesian network

1.1 Missing Completely at Random (MCAR)

The most basic missing data mechanism is called missing completely at random (MCAR). This
type of missing data occurs when the missingness of the data is independent of any of the random
variables in the original Bayesian network. In other words, whether or not part of a data example
is observed does not depend on the values in that example at all. For our example, an MCAR
mechanism would be that random errors in the data collection process make that for 10% of the
information about a, and 15% of the information about s, goes missing, but which values go
missing is completely at random and does not depend on the values of a, s, or even c.

a s

c

ma ms

Figure 2: Missingness graph (augmented Bayesian network) for the MCAR assumption

More formally, the MCAR assumption says that the variables x in the Bayesian network,
and the missingness variables m, are independent, that is, x⊥⊥m. We can also depict such
assumptions about p(x,m) graphically, in a Bayesian network for p(x,m) called a missingness
graph. The MCAR assumption holds in a missingness graph where the m nodes are disconnected
from the x nodes. Figure 2 depicts an MCAR missingness graph for our example.

The first and most basic algorithm to learn from missing data follows directly from the
MCAR definition. Suppose we want the learn the parameters for the conditional probability
p(x|y). Under the MCAR assumption, we have that x,y⊥⊥m, which means that

p(x,y,m) = p(x,y) · p(m) (1)

p(x,y,m = ob) = p(x,y) · p(m = ob) (2)

p(x,y) = p(x,y|m = ob) (3)

p(x|y) = p(x|y,m = ob). (4)

Therefore, the probability p(x|y) can be estimated from p(x|y,m = ob). We already know how to
do this: it is the probability p(x|y) for to the cases where everything is fully observed (m = ob).
Estimating this quantity, as in the complete-data case, can be done by simple counting. This
algorithm is called listwise deletion or complete-case analysis.
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When there a few examples in the data, or when many values are missing, listwise deletion
becomes impractical. The pairwise deletion or available-case analysis algorithms avoids the cost
of deleting all missing values. When estimating p(x|y), we only need the value for x and the
values for y to be observed. The fact that variables outside of x or y are unobserved does not
matter. Hence, we can learn parameters as

p(x|y) = p(x|y,mx = ob,my = ob). (5)

where again the problem is reduced to learning from complete data.

a s c ma ms

1 0 0 ob ob
1 1 1 ob ob
1 0 1 ob ob

(a) Dataset for listwise deletion (m = ob)

a s c ma ms

? 1 1 unob ob
1 0 0 ob ob
1 1 1 ob ob
? 0 0 unob ob
1 0 1 ob ob

(b) Dataset for p(s) pairwise deletion (ms = ob)

Figure 3: Subsets of the dataset in Figure 1 used by deletion algorithms.

For our example, the MCAR assumption says that a, s, c⊥⊥ma,ms. Figure 3 shows the
dataset used by listwise deletion. Indeed, this dataset has no missing values, at the cost of only
having 3 examples. Listwise deletion estimates

p(s) = p(s|ma = ob,ms = ob) ≈ 1/3. (6)

Pairwise deletion also learns from data where a is missing and estimates from 5 examples that

p(s) = p(s|ms = ob) ≈ 2/5. (7)

1.2 Missing at Random (MAR)

The MCAR assumption is strong and does not often hold in real-world data. It is more common
to assume that the data is missing at random (MAR). This assumption holds if the missingness
variables are conditionally independent of the partially-observed variables xm given the fully-
observed variables xo, i.e., if xm⊥⊥m | xo. Graphically, this corresponds to a missingness graph
where the m are allowed to have parents that are fully observed. For example, suppose that

a s

c

ma

ms

p(a = 1)
0.1

p(s = 1)
0.3

p(ma = ob)
0.5

a s p(c = 1|a, s)
0 0 0.1
0 1 0.3
1 0 0.2
1 1 0.4

c p(ms = ob|c)
0 0.2
1 0.9

Figure 4: An MAR missingness graph
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people diagnosed with cancer are more likely to divulge private information, and tell doctors
whether they smoked or not. The missingness of s now depends on the value of c. In our example
missingness graph, this means that there is an edge from c to ms (see Figure 4). Whether s is
missing depends on all other variables, including the value of s. However, given that we know c,
the missingness of s becomes independent of its value. The variable a remains MCAR.

Deletion methods for MCAR data lead to biased parameter estimates on MAR data. Suppose
we are interested in learning the parameter for p(c = 1|a = 0, s = 1) whose true value is 0.3.
Listwise or pairwise deletion (they are identical in this case) estimate this parameter as

p(c = 1|a = 0, s = 1,m = ob) = p(c = 1|a = 0, s = 1,ma = ob,ms = ob) (8)

= p(c = 1|a = 0, s = 1,ms = ob) (9)

=
p(c = 1,ms = ob|a = 0, s = 1)

p(ms = ob|a = 0, s = 1)
(10)

=
p(c = 1|a = 0, s = 1)p(ms = ob|c = 1)∑

c p(c|a = 0, s = 1)p(ms = ob|c)
(11)

=
0.3 · 0.9

0.3 · 0.9 + 0.7 · 0.2
= 0.66. (12)

This means that, even when we have plenty of data, only looking at the part of the data that
is complete will result in biased probabilities. The probability of cancer for patients that smoke
but were not exposed to asbestos is overestimated by 36%. Indeed, the missingness mechanism
is more likely to show us cases where smoking and cancer co-occur, and more likely to hide the
other cases. We need more sophisticated algorithms to correctly learn from MAR data.

One can show that MAR missingness graphs are always identifiable, assuming that all param-
eters are non-zero. This means that, given sufficient data, and two possible missingness graphs,
we can tell with high confidence which missingness graph the data was generated from.

1.3 Missing Not at Random (MNAR)

All missing data mechanisms that are not MAR (and therefore also not MNAR) are categorized
as missing not at random (MNAR). In these mechanisms, there is a dependency between a
variable and its missingness, even when given the fully observed variables. Figure 5 depicts an
MNAR missingness graph.

a s

c

ma

ms

Figure 5: MNAR missingness graph

MNAR missingness mechanisms are in general non-identifiable. This means that there exist
two different Bayesian networks and missingness mechanisms that generate the same data. The
distribution over the observed values is identical. Consider a distribution with a single variable s
that is missing not at random, and the two distributions, p(s,ms) and p′(s,ms) in Figure 6. The
second and fourth row of the table both result in data where s is missing. These two distributions
therefore generate the same data when

θ1 = θ′1, θ3 = θ′3, and θ2 + θ4 = θ′2 + θ′4. (13)
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s

ms

(a) MNAR missingness graph

s ms p(s,ms) p′(s,ms)
0 ob θ1 θ′1
0 unob θ2 θ′2
1 ob θ3 θ′3
1 unob θ4 θ′4

(b) Joint probability distributions

Figure 6: Two distributions for a simple MNAR missingness graph

Two concrete examples of such indistinguishable distributions are show in Figure 7. In both
cases, the data will have 30% value 0, 10% value 1, and the remaining 60% of values missing. In
the underlying distribution, however, p(s) is very different.

s ms p(s,ms) p′(s,ms)
0 ob 0.3 0.3
0 unob 0.1 0.5
1 ob 0.1 0.1
1 unob 0.5 0.1

(a) Distributions

s

ms

p(s = 1)
0.6

s p(ms = ob|s)
0 0.750
1 0.166

(b) Parameters p

s

ms

p(s = 1)
0.2

s p(ms = ob|s)
0 0.375
1 0.500

(c) Parameters p′

Figure 7: Two non-identifiable MNAR missingness graphs

2 Maximum-Likelihood Learning with Missing Data

In the complete-data case, maximum-likelihood learning seeks to optimize the likelihood of the
parameters given the data, which is defined as the probability of the data given the parameters:

L(θ|D) = p(D|θ) =

N∏
i=1

p(di|θ) (14)

where N is the dataset size and di represents the assignments made in the ith complete example
of the dataset. We can define a similar likelihood function in the incomplete-data case. Now,
a data example di may assign values to only a subset of the variables. The hidden variables in
example i are denoted hi. The marginal likelihood is then

L(θ|D) = p(D|θ) =

N∏
i=1

p(di|θ) =

N∏
i=1

∑
hi

p(di,hi|θ). (15)

Suppose we know the missingness mechanism’s structure and the parameters in the condi-
tional probability tables for the missingness mechanisms m. When we include this information
into the likelihood equation, it becomes

Lm(θ|D) =

N∏
i=1

p(di,mdi
|θ) =

N∏
i=1

∑
hi

p(di,hi,mdi
= ob|θ), (16)
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where mdi = ob denotes that the variables in di are observed. Now, the marginal likelihood
function has a desirable property for MAR data: it decomposes as

Lm(θ|D) =

N∏
i=1

∑
hi

p(di,hi,mdi
= ob|θ) (17)

=

N∏
i=1

∑
hi

p(mdi = ob|di,hi, θ)p(di,hi|θ) (18)

=

N∏
i=1

∑
hi

p(mdi
= ob|di)p(di,hi|θ) (19)

=

N∏
i=1

p(mdi
= ob|di)

∑
hi

p(di,hi|θ) (20)

=

(
N∏
i=1

p(mdi
= ob|di)

)
·

(
N∏
i=1

∑
hi

p(di,hi|θ)

)
, (21)

where we have used the MAR assumption in going from Equation 18 to 19. The parameters
θ only appear in the second factor, which is independent of the missing data mechanisms m.
We can optimize the likelihood by only optimizing the second factor. This means that the
maximum-likelihood parameters are the same for all mechanisms. It gives us a license to ignore
the missing-data mechanism during parameter learning from MAR data.

The above property no longer holds MNAR data. As we saw in Section 1.3, two different
sets of parameters can produce the exact same data under the MNAR assumption. In this case,
knowing the missingness mechanism changes the maximum-likelihood parameters.

For complete data, optimizing the likelihood function was easy because it factorized in terms
of the parameters. Unfortunately, this is no longer the case with missing data: the parameters
are coupled, and the likelihood landscape is complex, with a large number of local optima.

3 Expectation Maximization

There are several algorithms to learn maximum-likelihood parameters from data, including gra-
dient ascent and its extensions. By far the most popular technique, however, is the expectation
maximization (EM) algorithm.

3.1 Algorithm

EM is an iterative algorithm that produces a sequence of parameters estimates θ0, θ1, θ2, . . . .
The initial parameters θ0 are set arbitrarily. Next, EM iteratively performs two steps:

1. complete the missing data using parameters θi−1, and

2. estimate new parameters θi on the completed data.

These steps are repeated until either the θi, or the marginal likelihood L(θi|D) have converged.
The first step of EM is illustrated in Figure 8. The completed data set contains all possible

ways of filling in the missing values in the incomplete data. Every complete data case gets
assigned a weight, which is the probability of that completion according to the parameters θi−1.
For example, completing the case (?, 1, 1) to (1, 1, 1) has weight pθi−1(a = 1 | s = 1, c = 1).
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a s c

? 1 1
1 0 0
0 ? 1
0 ? 0
1 1 1
? 0 0
1 ? ?

(a) Incomplete data

a s c Weight For θi−1 all 0.5

1 1 1 p(a = 1 | s = 1, c = 1, θi−1) = 0.5
0 1 1 pθi−1(a = 0 | s = 1, c = 1, θi−1) = 0.5

1 0 0 1 = 1

0 1 1 p(b = 1 | a = 0, c = 1, θi−1) = 0.5
0 0 1 p(b = 0 | a = 0, c = 1, θi−1) = 0.5

0 1 0 p(b = 1 | a = 0, c = 0, θi−1) = 0.5
0 0 0 p(b = 0 | a = 0, c = 0, θi−1) = 0.5

1 1 1 1 = 1

1 0 0 p(a = 1 | s = 0, c = 0, θi−1) = 0.5
0 0 0 p(a = 0 | s = 0, c = 0, θi−1) = 0.5

1 0 1 p(b = 0, c = 1 | a = 1, θi−1) = 0.25
1 0 0 p(b = 0, c = 0 | a = 1, θi−1) = 0.25
1 1 1 p(b = 1, c = 1 | a = 1, θi−1) = 0.25
1 1 0 p(b = 1, c = 0 | a = 1, θi−1) = 0.25

(b) Completed data

Figure 8: An incomplete dataset and its completion according to the first step of EM

Computing these weights requires running inference in the Bayesian network with parameters
θi−1. Note that the weights for all the complete cases that come from the same incomplete case
sum to one. The last column of Figure 8 shows the weights when θi−1 sets all parameters in the
network to 0.5.

The second step of EM estimates new parameters θi from the completed data. When dealing
with standard complete data, we estimate the parameter θx|y as ID(xy)/ID(y), where ID(z) is
the number of cases in D where z holds. However, in the EM algorithm, our complete-data cases
have weights. We can define the expected count ID,i−1(z) as the sum of weights of all complete

a s c Expected count ID,i−1(world) For θi−1 all 0.5

0 0 0 p(b = 0 | a = 0, c = 0, θi−1) + p(a = 0 | s = 0, c = 0, θi−1) = 1
0 0 1 p(b = 0 | a = 0, c = 1, θi−1) = 0.5
0 1 0 p(b = 1 | a = 0, c = 0, θi−1) = 0.5
0 1 1 p(b = 1 | a = 0, c = 1, θi−1) + p(a = 0 | s = 1, c = 1, θi−1) = 1
1 0 0 1 + p(a = 1 | s = 0, c = 0, θi−1) + p(b = 0, c = 0 | a = 1, θi−1) = 1.75
1 0 1 p(b = 0, c = 1 | a = 1, θi−1) = 0.25
1 1 0 p(b = 1, c = 0 | a = 1, θi−1) = 0.25
1 1 1 p(a = 1 | s = 1, c = 1, θi−1) + 1 + p(b = 1, c = 1 | a = 1, θi−1) = 1.75

Figure 9: Expected counts for all complete-data cases

cases where z holds, according to the parameters θi−1. Figure 9 shows the expected counts for
completed data in Figure 8. From these expected counts, we estimate the new parameter θix|y
as ID,i−1(xy)/ID,i−1(y).
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Suppose that we have seeded θ0 such that all parameters are 0.5. The last column of Figure 9
shows the expected counts under θ0 for every complete data case. In the first iteration of EM, we
estimate the parameters θ1 from this table. For example, θ1a=1 = (1.75 + 0.25 + 0.25 + 1.75)/7 =
4/7 and θ1c=1|a=0,s=0 = (0.5)/(1 + 0.5) = 1/3. Thus, in the first iteration of EM, the parameter
θa=1 increases, and the parameter θc=1|a=0,s=0 decreases. These new parameters will induce
new weights for the completed data in the next iteration. In turn, this will change the expected
counts and lead to new parameter estimates.

3.2 Analysis

A key property of EM is that it monotonically increases the marginal likelihood of the parameters,
that is, L(θi|D) ≥ L(θi−1|D). Moreover, the fixpoints of EM, where θi = θi−1, are exactly the
stationary points of the marginal (log-)likelihood function, where its gradient is zero. These prop-
erties make that EM effectively finds parameters that locally maximize the marginal likelihood.
There is no guarantee, though, that EM will find the parameters that globally maximize the
marginal likelihood. Which optimum EM ends up in depends strongly on the initial parameters
θ0. For this reason, one often runs EM multiple times with different θ0.

These key properties follow from a characterization of EM as optimizing another type of
likelihood, called the expected log-likelihood, at each iteration. For each data example i, we know
its observed values di. Suppose for now that we also know the values hi of the hidden variables.
Then, recall that the log-likelihood of that complete data is

LL(θ|D) =

N∑
i=1

log p(di,hi|θ) (22)

However, we do not know the true values of hi. Instead, we can assume certain parameters θ′

and compute the expected value of log p(d,h|θ) according to the distribution induced by θ′. This
expected value is

∑
h p(h|d, θ′) · log p(d,h|θ). The total expected log-likelihood then becomes

ELL(θ|D, θ′) =

N∑
i=1

∑
hi

p(hi|di, θ′) · log p(di,hi|θ). (23)

Note that this function involves two sets of parameters. The first parameters θ are the ones we
want to compute the log-likelihood of. We can only do so if we assume a distribution over the
hidden values. This assumed distribution is captured by the second parameters θ′.

The expected log-likelihood relates to the likelihood as follows. Let θ? be the parameters
that maximize the expected log-likelihood:

θ? = arg max
θ

ELL(θ|D, θ′). (24)

For these parameters, one can show that L(θ?|D) ≥ L(θ′|D). Thus, maximizing the expected
log-likelihood monotonically increases the marginal likelihood. Moreover, one can show that
the parameters θi computed by the EM algorithm at iteration i are exactly the parameters that
maximize ELL(θ|D, θi−1). This proves that EM monotonically increases the marginal likelihood.
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